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Abstract
In the usual Fock and Darwin formalism with a parabolic potential characterized
by the confining energy ε0 = h̄ω0 ≈ 3.4 meV, but including explicitly also the
Zeeman coupling between spin and magnetic field, we study the combined
orbital and spin magnetic properties of quantum dots in a two-dimensional
electron gas with the parameters for GaAs, for N = 1 and N � 1 electrons on
the dot.

For N = 1 the magnetization M(T,B) consists of a paramagnetic spin
contribution and a diamagnetic orbital contribution, which dominate in a non-
trivial way at low temperatures and fields and at high temperatures and fields
respectively.

For N � 1, where orbital and spin effects are intrinsically coupled
in a subtle way and cannot be separated, we find in a simplified Hartree
approximation that at N = m2, i.e. for a half-filled last shell, M(T,B,N)

is parallel (antiparallel) to the magnetic field, if temperatures and fields are
low enough (high enough), whereas for N �= m2 the magnetization oscillates
with B and N as a T -dependent periodic function of the variable x :=√
NeB/(2m∗cω0), with T -independent period�x = 1 (wherem∗ = 0.067m0

is the small effective mass of GaAs, while m0 is the electron mass).
Correspondingly, by an adiabatic demagnetization process, which need

only be fast enough with respect to the slow transient time of the magnetic
properties of the dot, the temperature of the dot diminishes or increases with
decreasing magnetic field, and in some cases we obtain quite pronounced
effects.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)
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1. Introduction

In addition to the charge degrees of freedom, the spin of the electrons in quantum dots
will certainly play an important role in future magneto-electronic devices for classical or
quantum computing, involving quantum dots (‘artificial atoms’) [1], although the spin degrees
of freedom are usually neglected, since typically the orbital magnetism dominates in quantum
dots, as is known, and as we will also see below. However, in this paper we look at the magnetic
properties of quantum dots more in detail, including the ‘atypical’ spin degrees of freedom,
to see whether in this way one may be led to some ‘new physics’. Moreover, it is clear that
for our purpose it is not the most elaborate many-body techniques that are important; simple
approaches should suffice for drawing relevant conclusions. With this in mind, we concentrate
below on the two cases N = 1 and N � 1, where N is the number of electrons in the dot.

In any case, solids with quantum dots (i.e. planar artificial atoms) placed in an external
magnetic field �B have to acquire an additional magnetic moment. If the dots do not interact,
this moment is ND

�M , where �M is defined as the mean magnetic moment of a single dot and
ND the number of dots. That is why the following calculations reduce to considering the
behaviour of a single dot in thermodynamic equilibrium with the surroundings. In this case
we can consider the magnetic field �B acting on the electrons in the dot as being identical to
the external field.

In the following we always assume that the field �B is constant in space and is in the
z-direction, whereas the electrons move in the (x, y) plane.

2. The case of N = 1

To begin with, we consider the simple case of a dot with one electron. In such a model,
and in the usual effective-mass approximation, the motion of the electron is described by the
Hamiltonian

Ĥ = − h̄2

2m∗ ∇2 +
1

2
m∗ω2r2 +

h̄ωc

2
(l̂z + g∗Ŝz) (1)

wherem∗ is the effective mass of the electron (=0.067m0 for GaAs, wherem0 is the electronic
mass), ∇2 is the Laplacian in two dimensions, h̄ = h/(2π), with h Planck’s constant,
ωc = |e|B/(m∗c) is the cyclotron frequency, ω2 := ω2

0 + ω2
c/4, where ω0 is the parameter

characterizing the strength of the parabolic potential, which essentially confines the electron
to the dot. Finally, l̂z = −i(x ∂/∂y − y ∂/∂x), with integer eigenvalues m, is the (reduced)
operator of the orbital angular momentum, while the corresponding (reduced) spin momentum
Ŝz has the eigenvalues ± 1

2 (here ‘reduced’ means ‘measured in units of h̄’). Furthermore, in
the following we use the ‘effective Bohr magneton’:

µ∗
B := h̄ωc

2B
= h̄|e|

2m∗c
.

Also, g∗ := (m∗/m0)g is the corresponding effective g-factor, where for the free electron one
would have m∗ = m0 and g = 2, whereas for GaAs, we have g ∼= −0.44, and (as already
mentioned)m∗ ∼= 0.067m0. Therefore, for GaAs, the quantity |g∗| is �1, whereasµ∗

B � µB .
The eigenfunctions of the Hamiltonian (1) have the following form [2]:

ψ(�r, σ ) = ϕn+,n−(�r)χsz (σ ) (2)

where χsz(σ ) are normalized eigenfunctions of the spin operator Ŝz with eigenvalue sz = ± 1
2 ,

while the coordinate wavefunction can be written as

ϕn+,n−(�r) = (â)n+(b̂)n−

l0

√
2πn+!n−!

exp

(
−−|x + iy|2

2l20

)
. (3)
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Here

â := 1

2i

[
x + iy

l0
− l0

(
∂

∂x
+ i

∂

∂y

)]

b̂ := 1

2

[
x − iy

l0
− l0

(
∂

∂x
− i

∂

∂y

)]

with l20 = h̄2/(m∗ω); n± = 0, 1, 2, . . .; sz = ± 1
2 .

The energy eigenvalues corresponding to these wavefunctions are

εn+,n−,sz = ε+

(
n+ +

1

2

)
+ ε−

(
n− +

1

2

)
+ g∗ h̄ωc

2
sz (4)

with ε± := h̄ω ± 1
2 h̄ωc.

The partition function Z(T ,B) of the system can be easily calculated and is equal to

Z(T ,B) =
∞∑

n+=0

∞∑
n−=0

1/2∑
sz=−1/2

exp

(
−εn+,n−,sz

kBT

)

= cosh

(
g∗h̄ωc
4kBT

) [
cosh

(
h̄ω

kBT

)
− cosh

(
h̄ωc

2kBT

)]−1

(5)

where kB is the Boltzmann constant and T the ‘Kelvin temperature’. All other characteristic
thermodynamic quantities can be found from Z(T ,B) by means of known derivatives. For
instance, the mean moment of a dot is [3]

M = kBT
1

Z

(
∂Z

∂B

)
T

. (6)

Thus for N = 1, the free enthalpy G(T ,B) = −kBT lnZ(T ,B), and the magnetization
as well, can simply be separated into a ‘paramagnetic’ spin contribution, corresponding to the
first factor on the r.h.s. of (5), and the usual diamagnetic ‘orbital’ contribution corresponding to
the second factor in (5). Due to the smallness of g∗, the paramagnetic contribution is very small
in GaAs. However, at low fields, for high enough temperatures the spin contribution dominates
in any case, since a systematic Taylor expansion shows that the ‘paramagnetic factor’ is

Zspin
∼= 1 +

(g∗)2e2B2

8(m∗)2k2
BT

2
+ · · ·

(i.e. the correction is ∝B2/T 2), whereas the ‘orbital factor’ is

Zorbital
∼= 1 − h̄4ω2

0ω
2
c

48k4
BT

4
+ · · ·

(i.e. here the correction is ∝B2/T 4). Note that here we have explicitly used the B-dependence
of ω = √

(ω2
0 + ω2

c/4), which is sometimes ‘approximated away’ too early.
Of course we are more interested in the low-temperature behaviour: in any case, the

magnetization M(T,B) can be calculated for N = 1 completely generally from the following
formula, with β := (kBT )

−1, and with the characteristic energy εB ∝ B, i.e. εB := h̄ωc/2:

M(T,B)

µ∗
B

= g∗

2
tanh

(
g∗εBβ

2

)
−

sinh
(√

ε2
0 + ε2

Bβ
)
εB

/√
ε2

0 + ε2
B − sinh(εBβ)

cosh
(√

ε2
0 + ε2

Bβ
) − cosh(εBβ)

. (7)

This formula can be evaluated in various limits; i.e. due to the smallness of g∗ for GaAs,
one can consider for example the limit g∗εBβ/2 � 1 while at the same time εBβ � 1
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(i.e. h̄|e|B/(2kBT ) � kBT ), which is somewhat strange, although not unreasonable, if one
considers fields in the tesla range and temperatures in the millikelvin region.

In the following, we also consider adiabatic demagnetization or magnetization processes,
i.e. where during the change ofB and the ensuing measuring processes the entropy of the dot is
kept constant. This only implies that the changes of the B-field, and the measuring processes
considered, must be much faster than the thermal relaxation of the dot to the surroundings,
which is not unreasonable, since with advanced techniques magnetic fields can at present be
changed significantly in two picoseconds [4,5], whereas the thermal relaxation of the electronic
state of a quantum dot can be much slower, i.e. by several orders of magnitude [6].

Now an adiabatic change �B leads to a corresponding change �T , which is given by the
relation (

dT

dB

)
S

= − (∂S/∂B)T

(∂S/∂T )B
= − T

CB

(
∂M

∂T

)
B

= +
β

CB

(
∂M

∂β

)
B

. (8)

Here we have used the well-known relations ∂S/∂B = ∂M/∂T (which follows from
dG = −M dB − S dT ) and CB = T ∂S/∂T (the ‘heat capacity of the dot’ at constant B). So
from ∂M/∂β, i.e. from (7), knowing �B and CB (which must be >0 and can be calculated
from the formula CB(T , B) = kBT ∂2[T lnZ(T ,B)]/∂T 2), one can directly evaluate �T .

So at very low temperatures, i.e. if |g∗|εBβ/2 � 1 and—of course—ε0β � 1, one obtains
with the relation tanh(x) ∼= 1 − 2e−2x + · · ·, valid asymptotically for x � 1:

∂M̃

∂β
:= 1

µ∗
B

∂M(T B)

∂β

∼= εB[(g∗)2e−|g∗|εBβ − 2e−2ε0β]. (9)

But the heat capacity CB should remain positive for finite T . So for GaAs, in a range of
sufficiently low temperatures and sufficiently low fields, i.e. for temperatures T below (above)
a value T0(B) given by

exp

[
−2ε0 − |g∗|εB

kBT0(B)

]
= (g∗)2

2

adiabatic demagnetization (dB < 0) leads to a decrease (increase) of T . If—on the
other hand—we do not assume |g∗|εBβ � 1, but the opposite limit |g∗|εBβ � 1, then
we obtain ∂M̃/∂β = εB[(g∗)2/4 − kBT /ε0], leading to a similar conclusion, now with
kBT0(B)

∼= ε0(g
∗)2/4, not depending on B.

In figure 1, for various values of B, we plot the values of M̃(T , B) := M(T,B)/µ∗
B

against the temperature T—ranging from 0 K to ≈0.008 K—and the magnetic induction B—
ranging from 0 to 0.08 T; the characteristic line T0(B) separating positive and negative values
of M is given by the third-lowest contour line from the right, which ends for T0 → 0 at a value
Bk ≈ 0.048 T, and for B → 0 at a value Tk ≈ 0.008 K.

These are the values for GaAs, calculated with ε0 = 3.37 meV. (The corresponding values
for ε0 = 7.5 meV are: Tk ≈ 0.018 K; Bk ≈ 0.1 T—i.e. they scale roughly ∼ε0, as expected.)

In figure 2, the adiabatic derivative (dT /dB)S from equation (8) is plotted over B (T )
ranging from 0 to 5 T (from 0 to 6 K) in a 3D representation with contour lines. The special
contour line separating positive and negative values of (dT /dB)S hardly depends on B over
an extremely wide range of B-values, and is clearly visible (it is the line vertically above the
points with T ≈ 3 K). In agreement with the ‘third principal law of thermodynamics’, the
adiabatic derivative (dT /dB)S always vanishes for T → 0, for all values ofB. But one should
note that according to figure 2 and figure 3, (dT /dB)S piles up to very high values in the region
1 K � T � 1.8 K, for B-values �0.016 T: i.e., as seen in figure 3, in this ‘sensitive region’
one can easily obtain values of the adiabatic derivative between 100 and 500, and even larger
values for temperatures around 1.5 K, if the external magnetic field is around 0.001 T. Note,
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M/µ
B
*

- 0.005

0

+0.005

+0.010

Figure 1. The reduced magnetization M(T,B)/µ∗
B is presented as a function of the temperature

T (in K) and the magnetic induction B (in T) for a quantum dot with N = 1 electrons on it, in
a two-dimensional electron gas with the parameters of GaAs, and with the confinement potential
parameter ε0 = h̄ω0 = 3.37 meV. Note the change of sign of M from paramagnetic behaviour
(M > 0) to diamagnetic behaviour (M < 0) on crossing the contour line whereM(T,B) ≡ 0. (The
apparent discontinuities of the contour lines, representingM(T,B)/µ∗ = −5×10−3, −2.5×10−3,
±0, +2.5 × 10−3, . . . , as indicated at the margin, are due to inaccuracies of the plotting software.)

(dT/dB)
S

-0.5

0

+0.5

+1

+2

+4

-1

Figure 2. The ‘adiabatic temperature derivative’ (dT /dB)S is presented against the temperature
T (in K) and the magnetic induction B (in T) for a quantum dot with N = 1 electrons on it, in
a two-dimensional electron gas with the parameters of GaAs, and with the confinement potential
parameter ε0 = h̄ω0 = 3.37 meV. Note the change of sign of the derivative from positive values for
low temperatures (T < 3 K) to negative values for higher temperatures, and note the strong increase
in the region of 1.5 K for inductions below 1 T. (The apparent discontinuities of the contour lines
(dT /dB)S(T , B) = −1, −0.5, ±0, +0.5, . . ., as indicated at the margin, are due to inaccuracies of
the plotting software.)
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(dT/dB)
S

100

200

300

400

500

Figure 3. As figure 2, but for inductions as low as 0.002 T and below, where the ‘adiabatic
temperature derivative’ reaches extremely high values. (The apparent discontinuities of the contour
lines (dT /dB)S(T , B) = 100, 120, 140, . . ., as indicated at the margin, are due to inaccuracies of
the plotting software.)

however, that in our theory we cannot consider naively the limitB → 0, since the characteristic
magnetic length, the ‘cyclotron radius’

lm(B) :=
√

h̄

m∗ωc
=

√
h̄c

eB

should be much smaller than the separation of two dots, or much smaller than any other
geometrical extent of our 2D GaAs dot system (for B = 1 T, lm is 25.7 nm). Keeping this
constraint in mind, for change of the temperature by an infinitesimal adiabatic demagnetization
in the above-mentioned ‘sensitive region’, we have the following result.

For an isolated quantum dot in 2D GaAs, with N = 1 electrons on the dot, starting at the
point (T ≈ 1.5 K, B ≈ 0.01 T), for h̄ω0 ≈ 3.37 meV, we get �T/K � 100�B/T. This
implies that an unusually small adiabatic change of the magnetic field can lead to a significant
change of the electron temperature in the dot, if one roughly hits the above-mentioned region.

Thus, on the one hand, we have the change of sign of the adiabatic derivative from positive
values for T < 3 K to negative values for T > 3 K, a remarkable phenomenon in itself. On
the other hand we have the fact that the change �T in the ‘sensitive region’ is also unusually
large in magnitude, i.e. there it is really important to also explicitly consider the spin, and not
only the orbital motion.

Therefore, to diminish the dot temperature (compared with that of the surrounding solid),
e.g. by �T = −0.1 K (at least for a transient time τT , which is determined by the small
coupling of the dot to the degrees of freedom of the surrounding system, and which we assume
to be much larger than the time τB necessary for significant changes �B of the magnetic
field), in the above-mentioned region it is only necessary to decrease the magnetic field by
B � 10−3 T.

After having reached the thermodynamic equilibrium of the dot with its surroundings,
its temperature increases again, but that of the solid decreases, until they equalize, i.e. the
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final temperature has been lowered in any case. After that, the magnetic field can be turned
off isothermally and the process can be periodically iterated. In such a way this process can
be used for magnetic cooling of the dot system, which gives a flavour of the ‘new physics’
involved by controlling the magnetism of the dot.

All this will be considerably more effective—and also more interesting—for a large
number of dots and for N � 1 electrons per dot.

3. The case N � 1—a simplified Hartree approach

3.1. Basic approximations

If the dot contains N electrons, the Hamiltonian is

Ĥ =
N∑
j=1

{
− h̄2

2m∗ ∇2
j +

1

2
m∗ω2r2

j +
h̄ωc

2
(l̂z,j + g∗Ŝz,j )

}
+

1

2

(�=)∑
i,j

e2

ε|�ri − �rj | . (10)

Here the inclusion of the Coulomb interaction for our multi-electron planar parabolic quantum
dot leads to considerable complications in comparison to the case for free particles, since the
Coulomb energy is of the same order of magnitude as the kinetic energy for electrons confined
in dots. This Coulomb interaction is known to consist of the direct term (Hartree term) and
the exchange term (Fock term): the former interaction is of long-range type, while the second
one is short ranged (cf. [7, 8]) and oscillatory in its position dependence; cf. equation (13)
in [9]. As a consequence, as shown in a long calculation in [10] for which we do not have
a shorter argument, the ratio of the exchange energy divided by the Hartree energy decreases
in d = 2 dimensions as N−1/4. Therefore at sufficiently high N (�102–103) the exchange
should no longer play the usual all-important central role—considering also exact calculations
for O(10) electrons (see e.g. [9]), which show that then the above-mentioned ratio is �1/3. So
we neglect the exchange in a kind of zeroth-order approximation which still gives interesting
analytical results for the B- and T -dependence (see below) generalizing directly those of the
preceding section 2. (Including the exchange would preclude this analysis.)

Thus, from (10), we arrive at Hartree equations of the form [11]{
− h̄2

2m∗ ∇2 +
1

2
m∗ω2r2 +

h̄ωc

2
(l̂z + g∗Ŝz) + Vj (�r)

}
ψpj (q) = εpj ψpj (q) (11)

where q := (�r, σ ); j = 1, 2, . . . , N , and where the lower index pj represents a triple of the
three quantum numbers n+, n−, and sz, and where Vj (�r) has to be determined self-consistently:

Vj (�r) := e2

ε

∫
d2r ′ nj (�r ′)

|�r − �r ′|

nj (�r) :=
N∑

i (�=j)=1

∑
σ

|ψpi (�r, σ )|2.

ε is the dielectric constant of the solid, e.g. ε ≈ 12.5 for GaAs.
(Note that a numerical calculation supports the application of the Hartree approach, at

least for the qualitative behaviour of multi-electron dots [12].)
For a solution of the Hartree equations we use as the zeroth approximation the semi-

classical formula for n(r) given in [13], i.e.

nj (�r) ≈ n(�r) =




3N

2πR2

√
1 − r2

R2
for r � R

0 otherwise.

(12)
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This approximate formula, which admittedly contradicts the boundary conditions for the
harmonic oscillator functions, describes at least qualitatively the density of electrons inside the
dot (comparison with exact numerical results for a small number of confined electrons [12,14]
shows that the quantum corrections to n(r) do not modify it essentially except near the edge
in cases of ‘edge reconstruction’, as discussed in the already mentioned paper [9]; see also
chapter 4.7 in [2]).

As usual, for parabolic confinement we rely on the close connection between the ‘effective
dot radius R’ used in (12) and the multi-electron wavefunction; therefore one can consider R
also as the fitting parameter for this wavefunction.

In the zeroth order of perturbation we have with (12) for small r/R

Vj (r) ≈ e2

ε

∫
d2r ′ n(�r ′)

|�r − �r ′| ≈ 3πNe2

4εR

(
1 − r2

2R2

)
. (13)

As a consequence, in the interior of the dot (and not only there; see the remark below) we now
get for the Hartree differential equation the simple ‘renormalized form’{

− h̄2

2m∗ ∇2 +
1

2
m∗32r2 +

h̄ωc

2
(l̂z + g∗Ŝz)

}
ψp(q) = Epψp(q) (14)

i.e. through this equation we now have an effective single-particle equation, where the
‘renormalized confining frequency’ 3, the ‘renormalized single-particle energy’ Ep, and the
‘renormalized cyclotron length’ l are defined as

32 := ω2 − 3πNe2

4εm∗R3
Ep := εp − 3πNe2

4εR
l2 := h̄

m∗3
. (15)

So all three quantities are now R-dependent, which should be kept in mind.
Note that for our case, i.e. for N � 1, one has R � l; so almost all single-particle

wavefunctions should be exponentially small for r ≈ R; therefore only a negligible number
of electrons are located near the edge of the dot, and the solutions of equation (14) given by
equations (3) and (4) can also be applied for r > R.

3.2. Thermodynamics

At T > 0 the probability of finding an electron of the dot in a state with an energy

εp = εn+,n−,sz +
3πNe2

4εR
i.e. Ep = εn+,n−,sz , is defined by the Fermi distribution ns(ε), i.e.

ns(ε+n+ + ε−n−) :=
[

1 + exp

(
ε+n+ + ε−n− − µs

kBT

)]−1

(16)

where µ = µ(T ,N,B) is the chemical potential of the electrons in the dot, and, with
s = sz = ± 1

2 ,

µsz := µ− ε+ + ε−
2

− g∗ωc
2
sz − 3πNe2

4εR
ε± := h̄3± 1

2
h̄ωc. (17)

The chemical potentialµ can be determined as usual from the condition thatN = ∑+1/2
s=−1/2 Ns ,

with

Ns(T , B,µ) =
∞∑

n+=0

∞∑
n−=0

ns(ε+n+ + ε−n−). (18)
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Let us now introduce the grand thermodynamic potential Y(T , B,µ) = ∑+1/2
s=−1/2 Ys(T , B,µ),

through

Ys :=
∞∑

n+,n−=0

φs(ε+n+ + ε−n−) with φs(ε) := −kBT ln

[
1 + exp

(
µs − ε

kBT

)
N,B

]
. (19)

Then the ‘mean energy’E(T ,B,N) (i.e. the internal enthalpy6 of the dot), and its free enthalpy
G(T ,B,N) = E − T S, where S is the entropy, are determined by the equations

E = Y + µN − T

(
∂Y
∂T

)
− 9π

20

N2e2

εR
(20)

G = Y + µN − 9π

20

N2e2

εR
. (21)

Here the final term in equations (20) and (21) represents the ‘double-counting correction’ of
the Coulomb energy, where we have used the fact that

e2

2ε

∫
d2r

∫
d2r ′ n(r)n(r

′)
|�r − �r ′| = 3π

10

N2e2

εR
.

At T → 0, E and G transform into the energy of the ground state of the dot:

E0 = lim
T→0

E = lim
T→0

G = Y0 + εFN − 9π

20

N2e2

εR0

where

Y0 := lim
T→0

Y εF := lim
T→0

µ R0 := lim
T→0

R.

Now for finite temperatures we define our ‘effective dot radius’R = R(N,B, T ) (or more
precisely: the ‘effective radius of the electron liquid on the dot’) from the condition that the
free enthalpy should fulfil:(

∂G

∂R

)
|N,T ,B

= 0. (22)

Again, this condition couples spin and orbital degrees of freedom.
As in [10], we now use Laplace transforms of the quantities appearing in (18) and (19),

marked by a ‘tilde’; e.g. we write

ns(ε) = 1

2π i

∫ c+i∞

c−i∞
dp ñs(p)e

+pε with ñs(p) =
∫ ∞

0
dε ns(ε)e

−pε

where c is an arbitrary real number, which must only be ‘positive enough’ to ensure existence
of the transformation (see below). Then Ns and Ys can be represented in the following form:

Ns =
∫ ∞

0

(
−∂ns(ε)

∂ε

)
Z(ε) dε (23)

Ys = −
∫ ∞

0
ns(ε)Z(ε) dε (24)

6 Since the Zeeman term ‘−BM’ is included in the Hamiltonian H, the expectation value 〈H〉 is called the ‘internal
enthalpy’ whereas the name ‘internal energy’ is reserved for the expectation value of those parts of H, e.g. the ‘exchange
energy’, which do depend on M , but not explicitly on B. In fact, the relation between the ‘internal enthalpy’ I (T , B)
and the ‘internal energy’ U(T ,M) is given by the Legendre transform I (T , B) = U(T ,M)− BM .
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where the Laplace transform of Z(ε) is given by the simple expression

Z̃(p) = 1

p(1 − e−ε+p)(1 − e−ε−p)
. (25)

Here the constant c in the Laplace transform (see above) has to be chosen in such a way that
all singularities of Z̃(p) are situated to the left of the straight line (c− i∞, c+ i∞)—this gives
a precise meaning to the above-mentioned formulation ‘positive enough’; then the contour of
integration in (25) can be closed at infinity, and we can use the calculus of residues to evaluate
the integral. It is easy to show that Z̃(p) has at the same time poles of first order at the points
p = p(±)n := 2π inh̄3/ε±, with n = ±1,±2, . . ., and a pole of third order at p = 0, if the
quantity X := ωc/(23) is �=X0, where

X0 = 0,
1

3
,

1

5
,

3

5
, . . . . (26)

If, on the other hand, the non-generic condition X = X0 is fulfilled, then Z̃(p) has poles of
first, second and third order.

From now on we will be interested only in the ‘generic situation’, i.e. in those fields for
which X �= X0. Having found all the residues of Z̃(p) and performing the summation with
respect to all poles, we find an expression for Z(ε). Then, substituting Z(ε) into the integrals
(23) and (24) and using the properties of the Fermi functions, we find expressions for N and
Y . In the low-temperature limit kBT � µs , these quantities take the form

N = µ2

ε2
0

− 1

2
+ ((g∗)2 − 1)

(
h̄ωc

2ε0

)2

+
π2

3

(
kBT

ε0

)2

+
+1/2∑

s=−1/2

{
P
(+)
1

(
µsε+

ε2
0

)
− ε−

ε+
P
(+)
2

(
µsε+

ε2
0

)}

+
+1/2∑

s=−1/2

{
P
(−)
1

(
µsε+

ε2
0

)
− ε+

ε−
P
(−)
2

(
µsε−
ε2

0

)}
(27)

Y = −1

3

µ3

ε2
0

+
µ

2
− µ((g∗)2 − 1)

(
h̄ωc

2ε0

)2

− h̄3

2

[
1 +

4

3

(
h̄ωc

ε0

)2
]

− µ
π2

3

(
kBT

ε0

)2

+ ε−
+1/2∑

s=−1/2

{
P
(+)
1

(
µsε+

ε2
0

)
+
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)}

+ε+

+1/2∑
s=−1/2

{
P
(−)
1

(
µsε+

ε2
0

)
+
ε+

ε−
P
(−)
2

(
µsε−
ε2

0

)}
(28)

where

ε2
0 := h̄2

(
ω2

0 − 3π

4

Ne2

εm∗R3

)

which corresponds to the first equation in (15). Here the periodic functions P (±)
m (z) have for

even m the form

P (±)
m (z) =

∞∑
n=1

2π2nkT ε±
ε2

0

[
sinh

(
2π2nkT ε±

ε2
0

)]−1
cos(2πnz)

2m−1πmnm
(29)

whereas for odd m the same result applies, if the functions cos(2πnz) in (29) are replaced by
sin(2πnz).
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Finally, we obtain the following expression for the free enthalpy:

G = 2µ3

3ε2
0

+
9πN2e2

20εR
+ µ

∑
s=−1/2

{
P
(+)
1

(
µsε+

ε2
0

)
+ P (−)

1

(
µsε−
ε2

0

)}

− µ
∑

s=−1/2

{
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)
+
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)}

+
+1/2∑

s=−1/2

{
ε−P

(+)
2

(
µsε+

ε2
0

)
+ ε+P

(−)
2

(
µsε−
ε2

0

)}

+
+1/2∑

s=−1/2

{
ε2
−
ε+
P
(+)
3

(
µsε+

ε2
0

)
+
ε2

+

ε−
P
(−)
3

(
µsε−
ε2

0

)}

− h̄3

2

[
1 +

4

3

(
h̄ωc

2ε0

)2
]
. (30)

The chemical potential µ is found from (27), which can be rewritten as

µ2

Nε2
0

= 1 +
1

N

{
1

2
− ((g∗)2 − 1)

(
h̄ωc

2ε0

)2

− π2

3

(
kBT

ε0

)2
}

− 1

N

{
1/2∑

s=−1/2

[
P
(+)
1

(
µsε+

ε2
0

)
+ P (−)

1

(
µsε−
ε2

0

)]}

− 1

N

{
1/2∑

s=−1/2

[
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)
+
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)]}
.

In the lowest approximation, if the number of electrons in the dot is large (N � 1), then at
moderately low magnetic fields (h̄ωc � 2ε0) and moderately low temperatures this expression
takes the form (in the zeroth approximation, µ ≈ µ0) µ2

0/(Nε
2
0) = 1, or µ ≈ µ0 = ε0

√
N .

In the next approximation, within an accuracy of order 1/
√
N , the chemical potential is

equal to

µ ∼= ε0

√
N

{
1 +

1

2N
f (N,B, T )

}
(31)

where the quantity

f (N,B, T ) = 1

2
− ((g∗)2 − 1)

(
h̄ωc

2ε0

)2

− π2

3

(
kBT

ε0

)2

−
1/2∑

s=−1/2

[
P
(+)
1

(
µsε+

ε2
0

)
+ P (−)

1

(
µsε−
ε2

0

)]

−
1/2∑

s=−1/2

[
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)
+
ε−
ε+
P
(+)
2

(
µsε+

ε2
0

)]

is O(1), and from (17) one gets

µs ≈ (µ0)sz = ε0

√
N +

√
ε2

0 +

(
h̄ωc

2

)2

− g∗ h̄ωc
2
sz − 3πNe2

4εR
.

If we substitute this expression forµ(N,B, T ) in (30), we obtain the free enthalpy as a function
ofN ,B, and T . As follows from (31), the first summand in the r.h.s. of (30) is of orderN3/2−2σ ,
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if ε0 ∼ Nσ (it can be shown that σ = 1/6; see equation (33) below). The second summand
on the r.h.s. of (30) is of order N2−γ (with γ = 1

3 ; see (33)). All other summands have still
less order of magnitude. If we retain only the first two terms in the r.h.s. of (30) and use (22),
then we come to the following equation for R [10]:

ω2
0

∼=
(

3π

4

Ne2

εR3m∗

) {
1 +

100a∗
B

27πR

}
(32)

where a∗
B := h̄2ε/(m∗e2) is the effective Bohr radius.

This means that ω0 (=ε0/h̄) is essentially identified with the plasma frequency calculated
from the electron density in the dot calculated with T = 0 and B = 0; in this approximation
the radius R of the dot does not depend on B and T at all and is defined only by the number
N of electrons on the dot. To obtain a dependence of R on B and T while solving equation
(32), it is in principle necessary to take into account corrections of higher order; yet at N � 1
the corrections are very small, namely relatively O(N−1/2), and we neglect them.

For a∗
B � R the solution of (32) in the first approximation is

R ∼= R0

(
1 +

100a∗
B

51πR0

)
(33)

where

R0 :=
(

3πNe2

4εm∗ω2
0

)1/3

.

Hence

ε0 = h̄

[
ω2

0 − 3πNe2

4εm∗R3

]1/2

= h̄ω0

[(
100a∗

B

27πR

)/(
1 +

(
100a∗

B

27πR

))]1/2

∝ R−1/2 ∝ N−1/6

and

9π2N2e2

20εR
∝ N2

R
∝ N2−1/3

as already stated above.
From equation (32) it follows that R transforms into R0 in the classical limit (h̄ → 0);

cf. equation (12). Moreover, the dependence of R with respect to N and h̄ω0 as above
corresponds well to numerical results from [8].

Now the magnetic moment of a dot is defined by the derivative

M = −
(
∂Y
∂B

)
µ,T

.

Using expression (29) for Y we find M , taking into account terms of order 1/
√
N :

M

µ∗
B

=
√
N


((g∗)2 − 1)

µ∗
BB

ε0
+ 2

P
(+)
1 (µ0ε+/ε

2
0)− P

(−)
1 (µ0ε−/ε2

0)√
1 + (µ∗

B)
2B2/ε2

0


 (34)

where µ0 = ε0

√
N has been defined above.

We see from this expression thatM → 0 forB → 0, since then ε+ = ε−. At the same time
the first summand on the r.h.s. of (34) is negative ((g∗)2 < 1) and monotonically decreasing
with increasing B. However, the second summand oscillates around zero with increasing B,
and so the possibility exists that (1/B)M/µ∗

B may be positive at B → 0. Let us find the
conditions in which this case can happen.
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To do this we expand the r.h.s. of (34) into a series in terms of B, and in a linear
approximation in B we get for N � 1

M

µ∗
B

=
√
N((g∗)2 − 1)

µ∗
BB

ε0
+ 4NP0(

√
N)

µ∗
BB

ε0
≈ 4NP0(

√
N)

µ∗
BB

ε0
. (35)

The function P0(x) is periodic, with period �x = 1, i.e.

P0(x) = 2
∞∑
n=1

2π2nkBT

ε0

[
sinh

(
2π2nkBT

ε0

)]−1

cos(2πnx) (36)

which can also be written as

P0(x) =
{

+∞∑
n=−∞

A(x − n)

}
− 1

where the functions A(x − n) are calculated in the appendix. As a consequence of the large-n
behaviour of the Fourier coefficients in front of cos(2πnx) in (36), the function A(x) reaches
a sharp maximum at x = 0; that is,

A(x) ≡ ε0

4kBT

[
cosh

(
ε0x

2kBT

)]−2

→ A(0) = ε0

4kBT
.

Thus the functionP0(
√
N) in equation (35) takes positive values atN = m2 (m = 0, 1, 2, . . .),

if at the same time ε0/(4kBT ) > 1 (see also equation (37) below).
Therefore at low fields the quantity M/(Bµ∗

B) is positive, if the following two conditions
are simultaneously fulfilled: (i) the temperature has to be low enough: T < T0 := ε0/(4kB);
and (ii) the number N of electrons in the dot is equal to N = m2, with m = 0, 1, 2, . . . (which
corresponds for B = 0 to a ‘half-filled-outer-shell’ condition, as we shall see).

In fact, for a planar parabolic dot in the absence of magnetic field B and in a one-electron
approximation without interaction, the energy levels of the electron are defined by quantum
numbers n = 0, 1, 2, . . . (=n+ + n− in equation (4)) and are degenerate with respect to the
numbers

n+ − n− =
{

0; ±2; ±4; . . . ; ±n for even n

±1; ±3; ±5; . . . ; ±n for odd n

and, of course, also degenerate with respect to the spin.
Electronic states of a planar dot with the same quantum number n form a ‘shell’: then at

N = m2 the last electron shell (i.e. with the highest possible n) of the parabolic dot turns out
to be just half-filled.

(Here it should be noted that in equation (35) the explicit spin dependence—i.e. the term
involving (g∗)2—is negligible forN � 1, and the phenomenon considered is actually primarily
a shell effect.)

As a consequence, a planar quantum dot with N = m2 (�1), at low temperatures
(namely T < T0 = ε0/(4kB)) and at ‘sufficiently low fields’ (what this means quantitatively is
determined shortly), i.e. for B → 0, turns out to be a ‘paramagnetic two-dimensional artificial
atom’ with magnetic moment

M(T,B,N) = µ∗
B 4N

(
ε0

4kBT
− 1

)
µ∗
BB

ε0
. (37)

Thus, when the magnetic field is increased, the magnetic moment of a planar dot in a two-
dimensional electron gas at first increases ∝B according to (37); then, according to (34) it
reaches a maximum, then diminishes again, vanishes, and becomes negative.
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Let us first find the value B0 where M vanishes. At N = m2, i.e. at integer
√
N , we have

P
(±)
1

(
µ0ε±
ε2

0

)
≈ P1

{√
N

(
1 ± µ∗

BB

ε0

)}
≡ ±P1

(√
N
µ∗
BB

ε0

)

where P1(x) has been defined above. Then

M

µ∗
B

=
√
N

{
((g∗)2 − 1)

µ∗
BB

ε0
+ 4P1

(√
N
µ∗
BB

ε0

)}
. (38)

If T → 0, then at 0 < x < 1 we have P1(x)
∼= 1

2 − x. That is why at T = 0 for sufficiently
small magnetic fields

M

µ∗
B

=
√
N

{
((g∗)2 − 1)

µ∗
BB

ε0
+ 2 − 4

√
N
µ∗
BB

ε0

}
.

The r.h.s. of this expression is positive when

B < B0 := 2ε0

(4
√
N + 1 − (g∗)2)µ∗

B

≈ ε0

2
√
Nµ∗

B

. (39)

So ‘sufficiently small fields’ means B � B0; i.e. in the region (B < B0, T < T0) the magnetic
moment of a planar dot is positive (i.e. the dot is paramagnetic). Outside this region M is �0,
and the dot is diamagnetic.

For GaAs at h̄ω0 = 3.37 meV we have the following typical values for T0 and B0, which
should be compared with the results of figures 2, 3:

N = 100 T0 = 3.26 K B0 = 0.065 T

N = 25 T0 = 4.10 K B0 = 0.164 T.

As in the case of a dot with N = 1 electron, finally the adiabatic temperature derivative
(dT /dB)S w.r.t. changes of the magnetic field is calculated through the expression(

dT

dB

)
S

= −T (∂M/∂T )B,N

CB,N

where CB,N is the heat capacity of the dot. From (27) and (28) it is easy to show that

CB,N =
√
N

2π2

3

k2
B

ε0
+ O

(
1√
N

)
.

If we consider dots with half-filled last electron shells (i.e. N = m2), then according to (38)(
∂M

∂T

)
B,N

= 4µ∗
B

∂

∂T
P1

(√
N
µ∗
BB

ε0

)
.

(Here one should remember that P1(x) depends on T ; see equation (29).)
Hence it follows that(

dT

dB

)
S

= −4µ∗
B

(√
N

2π2

3

k2
B

ε0

)−1
∂

∂T
P1

(√
N
µ∗
BB

ε0

)
. (40)

If we use the relationship

∂P1(x)

∂x
= P0(x)

and the expression (36) for P0(x), then it is possible to show that at 0 < x < 1

P1(x) = 1

2

+∞∑
n=−∞

tanh

[
ε0(x − n)

2kBT

]
− x +

1

2
.
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Hence it follows that the derivative ∂P (x)/∂T vanishes at x = 0, 1
2 , 1. At the same time

∂2P1(x)

∂x ∂T

∣∣∣∣
x=0

= ∂2P1(x)

∂x ∂T

∣∣∣∣
x=1

= − ε0

4kBT 2
< 0

whereas
∂2P1(x)

∂x ∂T

∣∣∣∣
x=1/2

> 0.

Thus, at low fields (
√
Nµ∗

BB/ε0 � 1), like for N = 1 (see figure 2), we get positive
values of the adiabatic temperature derivative:(

dT

dB

)
S

= 3

2π2

ε0(µ
∗
B)

2

kB(kBT )2
B > 0. (41)

Altogether this means that the temperature obtained by adiabatic demagnetization of the
dots, dB < 0, is strongly B-dependent: it first diminishes with decreasing B, then reaches
a minimum value at B = Bk := ε0/(2

√
Nµ∗

B) (since the derivative (dT /dB)S vanishes at√
Nµ∗

BB/ε0 = 1
2 , i.e. B = Bk), and then begins to rise, due to the fact that (dT /dB)S < 0 at

B > Bk .
As regards theB-dependence of (dT /dB)S , we mention—however—the following point:

for N = 1, the contour line (dT /dB)S = 0 in figure 2 depends on T only, but not on B, for
a large region of B-values, where it is simply given by T ≈ 3 K. According to figure 2, this
seems only to be different for very small B-values at T > 3 K. In the former respect there
seems to be a qualitative distinction between the cases N = 1 and N � 1, which we do not
understand at present.

Finally, using expression (41), let us find out how fast the temperature of a dot is diminished
or increased by the adiabatic change of the magnetic field: if we let in (41)TS(B) = T +�T (B),
where T is the initial temperature, TS(B) the final temperature, and �T (B) � T , then it is
easy to show that

�T (B) ≈ 3

4π2

(
ε0

kBT

)3(
µ∗
BB

ε0

)2

T . (42)

Thus for quantum dots in a two-dimensional electron gas with GaAs parameters at a start
temperature of e.g. T = 2 K, and with a ‘confining energy’ ε0 = h̄ω0 = 3.37 meV, if one
wants to change the electron temperature on the dot by�T = ±0.1 K forN = 100, theB-field
only needs to change by ±0.063 T; and for N = 25, it only needs to change by ±0.057 T.
If h̄ω0 = 7.5 meV, then at N = 100 the field has to change by ±0.04 T and at N = 25 by
±0.035 T.

Finally the following points should be mentioned: as a consequence (i) of a pronounced
B-dependence of the total-angular-momentum quantum numbersL(B) and S(B) of the ground
state of the electronic ensemble and (ii) of the Coulomb interaction of the electrons, oscillations
of the physical properties of quantum dots withB have already been predicted and observed in
a number of papers; e.g. even in an early paper of Dingle [16], before the invention of quantum
dots, and later on in papers of Maksym and Chakraborty [7], and in [12]. Furthermore,
numerical results for small numbers of electrons, N = O(10), show that the maximum
electron density may not be at the origin for all electron numbers and magnetic fields (see
e.g. [8, 9, 14, 17]), and that the ‘electronic edge’ of the quantum dot may get a non-trivial
structure, i.e. the ‘edge reconstruction’ [2, 9]. However, here we stress for N � 1 that

(i) in principle the orbital and spin degrees of freedom are intrinsically coupled for the
individual electrons, although of course the total momentum quantum numbers S and
L remain well defined for circular dots; and that
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(ii) with the quasi-classical electron density (12) it follows from equation (39) that there are
not only periodic oscillations of the magnetization of the dots with a period ∝B√

N/ε0, but
that throughout these oscillations, M does not remain negative but alternates periodically
in sign. This is essentially a ‘Hartree shell effect’, and it seems from our analytical results
that this should be seen parallel to the exchange mechanisms, i.e. one is dealing—as
one might say—with two different sides of one coin. This is analogous to the situation
in the conventional 3d magnetism, where both the ‘Hubbard mechanism’ (in mean-field
approximation essentially a Hartree effect) and the ‘Hund’s-rule exchange’ are important
for the magnetic properties, although of different relative importance for different systems.

4. Conclusions

It follows from the above statements that:

• The magnetization of a planar one-electron dot, N = 1, see (6), can be separated into
two parts: (i) the paramagnetic magnetization caused by the magnetic spin momentum of
the electron itself; and (ii) the orbital magnetization which is due to the quantized orbital
motion of the electron of the dot in a magnetic field. At low temperatures (T < T0) and
fields (B < B0) the paramagnetic part of the susceptibility exceeds the diamagnetic one,
and as a whole the dot is paramagnetic, whereas at high fields and temperatures, the dot
behaves diamagnetically. An analogous situation is observed concerning the adiabatic
temperature derivative w.r.t. changes of the magnetic field: at low fields (B < Bk) and
temperatures (T < Tk), the adiabatic temperature derivative (dT /dB)S is >0, whereas it
is <0 at high fields and temperatures. For more results for GaAs parameters, figure 2 and
figure 3 should be consulted, and it should be noted that in the case of figure 3 one obtains
quite pronounced effects in the ‘sensitive region’ of T ≈ 1.5 K for B � 0.002 T.

• In a many-electron planar dot (N � 1), the effects of quantization of orbital motion and
the spin effects cannot be separated and should be treated simultaneously. We do this
within a simplified Hartree approach leading to a renormalized single-particle equation,
where the effective radius R of the electron liquid on the dot is used as fitting parameter
to minimize the free enthalpy of the system at finite temperatures. In this way, orbital and
spin degrees of freedom are now coupled in a rather subtle way.

With increasing B, for N � 1, a spin-dependent restructuring of energy levels takes
place. As a consequence of a shell effect, this leads to a periodic change of the magnetic
properties of the electrons in a dot with varying B, which is a function of the variable

x :=
√
Nh̄|e|B

2m∗cε0

with period �x = 1. (Here all parameters have their usual meaning, and ε0 = h̄ω0 is the
confinement energy. It should be noted that the period does not depend on the temperature
and involves only the characteristic energy scales of the system, except for the factor

√
N .

The factor
√
N itself is of course related to the above-mentioned condition of a half-filled

outer shell, N = m2.) Furthermore, the magnetic susceptibility of a dot with a half-filled
last electron shell changes not only in magnitude, but also in sign: for low fields (B < B0)
and temperatures (T < T0), the dot as a whole is paramagnetic, whereas with increasing
B and T , the behaviour of the dot transforms from paramagnetic to diamagnetic.

In an analogous manner, the temperature effect induced by adiabatic demagnetization
of the dot behaves differently at low temperatures and fields (T < Tk , B < Bk) and at
high fields (B > Bk), respectively: in the former case, the temperature diminishes with
adiabatic decrease of B, whereas in the second case, it rises.
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Appendix

In this appendix we derive the relation between the periodic function P0(x), given by the
‘Bloch representation’ equation (36), and the corresponding ‘Wannier representation’, given
by the functions A(x − n).

The periodic function P0(x) (=P ′
1(x)) is

P0(x) = 2
∞∑
n=1

Ã(n) cos(2πnx) =
{

+∞∑
n=−∞

Ã(n)ei 2πnx

}
− 1

where

Ã(n) = 2π2nkBT

ε0

[
sinh

(
2π2nkBT

ε0

)]−1

.

Using the identity
+∞∑

n=−∞
δ(x − n) =

+∞∑
n=−∞

exp(−i 2πnx)

we find

P0(x) =
{∫ +∞

−∞
Ã(k)e2π i(x−n) dk

+∞∑
n=−∞

δ(k − n)

}
− 1

=
∫ +∞

−∞
Ã(k) dk

+∞∑
n=−∞

e2π i(x−n) − 1 =
+∞∑

n=−∞
A(x − n)− 1

with

A(x) =
∫ +∞

−∞
Ã(k)e2π ikx dk ≡ ε0

4kBT

[
cosh

(
ε0x

2kBT

)]−2

.
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